BOSTON
UNIVERSITY

Lecture O/a
Gradients

DLADS — Spring 2024

https://udlbook.github.io/udlbook/

How do we efficiently compute
the gradient over deep
networks?

Loss function

* Training dataset of / pairs of input/output examples:
1
{Xiv Yifi=1

or measures how bad model is:

L[¢7 f [Xia ¢]7 {Xia Yi 7{:1]

or for short:

L [¢] Returns a scalar that is smaller

when model maps inputs to
outputs better

Gradient descent algorithm

Step 1. Compute the derivatives of the loss with respect to the parameters:

ﬂ
d¢o
OL

OL 9p1

96~ | ;| Also notated as V,, L

OL
L O N -

Step 2. Update the parameters according to the rule:

oL
d)(—qb—a%a

where the positive scalar « determines the magnitude of the change.

But so far, we looked at simple models that
were easy to calculate gradients

For example, linear, 1-
layer models.

Least squares loss for
linear regression

= Z (P + P15 — yi)z
i=1

0l 2$z‘(¢0 + 1w — yz) each parameter

0Y;
oY; _ o _ 2(¢o + drs — i) Partial derivative w.r.t.
olo

Op1

What about deep learning models?

0, € R?*2 Q3 € R?¥3
Input, x Hidden Hidden Hidden Output, y
layer, hy layer, ho layer, hs ’
D;, =3 D, =14 Dy =2 D; =3 D, =2

h; = a8, + Qox]

hy = a|8; + Q1hy]

h; = a|8; + Q2hy)
flx, ¢p| = B3 + Qshs

We need to compute partial derivatives w.r.t.
every parameter!

I I

Loss: sum of individual terms: L[¢] — Z EZ — Z l[f[X“ qﬁ]) yz]

1=1 1=1

ol;|
SGD Algorithm: ¢t—|—1 YA ¢t Z ¢t

'LEBt
Millions and even billions of _
parameters: ¢ - {IBO"QO' 18119'1' ﬁZ’QZ’ }
We need the partial derivative with @Ez 882
respect to every weight and bias we and
want to update for every sample in 5’Bk 8ﬂk

the batch.

Network equation gets unwieldy even for
small models

* Model equation for 2 hidden layers of 3 units each:

y' = ¢y + dratio + Y11albio + O11x] + Y12a]f20 + O212] + Y13a[030 + O312]]
+ ¢halthao + Pa1alfi0 + O112] + Va2l + O212] + 238[b30 + O312]]
+ a0 + Ps1alfio + O112] + Ys2a[ba0 + O212] + Y33a[b30 + O312]]

Gradients

* Toy model

 Jupyter notebook example of backprop and autograd
* Matrix calculus

* Backpropagation matrix forward pass

* Backpropagation matrix backward pass

Problem 1: Computing gradients

I I
Loss: sum of individual terms: L[¢] — Zéz — Z l[f[Xz, Qb], yz]
i=1 i=1
ol;|
SGD Algorithm: ¢t—|—1 VAN ¢t Z ¢t
1€ B4

Parameters:

¢ — {/807 ﬂ()?IBl) ﬂ171827 927/837 ﬂg}

% nd %

0By, 082,

Need to compute gradients

Algorithm to compute gradient efficiently

 Rumelhart, Hinton, and Williams (1986)

BackProp intuition #1:

Training
{2 output, vy
O—.
0K 0

Training Hidden Hidden Hidden Output
input, x layer, hy layer, hs layer, hs flx, @]

Loss, (

« The weight on the orange arrow multiplies activation (ReLU output) of previous layer
« We want to know how change in orange weight affects loss

 |f we double activation in previous layer, weight will have twice the effect

e Conclusion:

BackProp intuition #2:

2 Q (2 (2 3 @

S0 O |
O O

O A o)

Training Hidden Hidden Hidden Output

input, x layer, hy layer, hy layer, hs flx, P] Loss, [

To calculate how a small change in a weight or bias feeding into hidden layer hymodifies
the loss, we need to know:

* how a change in layer h3 changes the model output f
* how a change in the model output changes the loss [

BackProp intuition #2: the backward pass

: .

Training Hidden Hidden Hidden Output

input, x layer, hy layer, ho layer, hs flx, @] Loss, |

To calculate how a small change in a weight or bias feeding into hidden layer h, modifies
the loss, we need to know:

* how a change in layer h, affects h;

* how h3 changes the model output f We know this from the
* how a change in the model output f changes the loss [previous step

BackProp intuition #2: the backward pass

O
O
S %
O

Training Hidden Hidden Hidden Output Loss. |
input, x layer, h; layer, hs layer, hs flx, ¢] ’

To calculate how a small change in a weight or bias feeding into hidden layer h;modifies
the loss, we need to know:

* how a change in layer h; affects h,
* how a change in layer h, affects h;
* how h3 changes the model output f | Weknowthese from the

, revious steps
* how a change in the model output f changes the loss [g g

—

Gradients
* Backpropagation intuition

 Jupyter notebook example of backprop and autograd
* Matrix calculus

* Backpropagation matrix forward pass

* Backpropagation matrix backward pass

Toy Network

1 input @
~N
0—0*—0—0—: \ (i) (O
Y

3 layers, 1 hidden unit each

flx;, d] = B3 + w5 - a[,BZ + w, 'a:ﬁ1 + wq - a[By + wy ‘xi]]]

£ = (f[x;,] —)2

Gradients of toy function

flx;, ¢] = B3 + w3 - a [,32 T W; ’a:ﬁ1 + wq - a[fy + wg xl]]]

0 = (flx;, ¢ — y1)*
We want to calculate: /
oY; 0l; 0l; oY; 0l; 0l oY;
0By’ Owy’ 0By Owi 0By Owy’ — 0B3°

Tells us how a small
change in 5; or w; change
the loss #; for the it
example

%

d
an Deon

Toy function o
GO —()—(w) Q—: (%)

OmOn®

Activations
fo=PBo+ wo-x fa=02+wyhy
hy = al[fo] hsz = alf;]
fi=p+w-hy fz=PpF3+ w3z h3
h, = alfi] £ = (yi — f3)°

"~ |

Intermediate values

Refresher: The Chain Rule

(D=
For h(x) = g(f(x))

then h'(x) = g’(f(x)) f'(x), where h'(x) is the derivative of h(x).

Or can be written as

oh 0h dg
of 0dg Of

Forward pass

flx;,] =B + w3 -a [,32 + w, - a|By + wy - a[By + wy xl]]]

£ = (f[x,] — y1)?

1. Write this as a series of
intermediate calculations

fo = PBo + wo - x; fo =02+ wy-hy
2. Compute these h, = alfo] hs = a[f,]
intermediate quantities f1 — ,81 + wq - hl f3 — ,83 + w3 - h3

h, = alfy] t; = ()’i—fs)z

Backward pass

flx;, @] =,83+a)3-a[,82+w2-a

fi — (f [xl') ¢_
1. Compute the derivatives
of the /oss with respect to 0Y; 0Y; 0Y;
these intermediate 0 fs ’ Ohs) O fo)
guantities, but in reverse —

order.

:,31 + w;q - a[fy + wp - xl]]]

—¥:)?
ol; ol 0 and ot;
8h2 ’ (‘?fl ’ ahl ’ afO
C—

Backward pass

flx;,] = B3 + w3 - a [,82 + w, - a:ﬁ1 + wq - a[By + wy 'xi]]]

£; = (f[x,] — y:)?

1. Compute the

derivatives of the loss 9 & o & P &; O EZ_ o Ei o &' O Ei

with respect to these and ——
intermediate quantities, Ofs’ 0Ohs’ 0Ofy 0Ohy’ Of1 Ohy d fo

but in reverse order.

O OO B—B—B—C
9 fo Oh1 0 f1 Oho df2 Ohs O0fs3 v

s ——

Backward pass

1. Compute the fo =Po+ wp - x fo =02+ wy-hy
derivatives of the loss h: = a h = a
with respect to these 1 [fO] 3 [fZ]
intermediate quantities, f1 — ,81 + w1 h1 f3 — ,83 + w3 - h3
butinre der.

uti verse order. hz — a[fl] fi — (f3 _ yi)z

 The first of these
derivatives is trivial 8€

fs

(fS — yz)

s ——

Backward pass

1. Compute the fo = Po + wo - x f2=P2+ wy - hy
derivatives of the loss hy = alfo] h; = alf;]
with respect to these . . _ ,
intermediate quantities, h=htwh fs = b3 + w3 2h3
but in reverse order. h, = a[fq] i =y — f3)
* The second of these

derivatives is computed ag% L afB 862

via the chain rule 8h3 — (‘)hg (‘)fg

/

How does a small
change in h3 change ¢;?

s ——

Backward pass

1. Compute the fo =Po+ wp - x fo =02+ wy-hy
derivatives of the loss h: = a h = a
with respect to these 1 [fO] 3 [fZ]
intermediate quantities, f1 — ,81 + w1 h1 f3 — ,83 T w3 - h3
but in reverse order.

nrev h, = a[fq] £ = (y; — f3)?

e Th d derivati
s computed via the ot; Ofs3 ot
chain rule —
Ohs Ohs 0f3

/ How does a small

change in f3 change ¢;?

How does a small
change in h3 change ¢;?

How does a small
change in h; change f5?

Backward pass

1. Compute the
derivatives of the loss
with respect to these
intermediate quantities,
but in reverse order.

e The second of these
derivatives is computed
via the chain rule

s ——

fo=PFo+ wo-x f=02+wyhy
hy = al[fo] hsz = alf;]
fi=btwi -y fz=PpF3+ w3z h3
h, = alfi] £ = (yi — f3)°

ot; dfs oL,
Ohs ~ Ohs Ofs

Already computed!

s ——

Backward pass

1. Compute the fo =Po+ wp - x fo =02+ wy-hy
derivatives of the loss h: = a h = a
with respect to these 1 [fO] 3 [fZ]
intermediate quantities, f1 — ,81 + w1 h1 f3 — ,83 T w3 - h3
but i der.

ut in reverse oraer. hz — a[fl] fi — (yi _ f3)2

* The remaining o, = 9fy \ Ohs 0fs

derivatives also
calculated by further
use of chain rule

s ——

Backward pass

1. Compute the fo =Po+ wp - x fo =02+ wy-hy
derivatives of the loss h: = a h = a

with respect to these 1 [fO] 3 [fZ]
intermediate quantities, f1 — ,81 + w1 h1 f3 — ,83 + w3 - h3
but in reverse order. hz _ a[fl] fi — (yi _ f3)2

* The remaining
derivatives also
calculated by further
use of chain rule

dfa O0f2 \Oh3 Jfs

Already computed!

s ——

Backward pass

1. Compute the fo =Po+ wp - x fo =02+ wy-hy
derivatives of the loss h: = a h = a

with respect to these 1 [fO] 3 [fZ]
intermediate quantities, f1 — ,81 + w1 h1 f3 — ,83 + w3 - h3
but in reverse order. hz _ a[fl] fi — (yi _ f3)2

. e remaining —
derivatives also Of2 Of2 \Oh3 fs

calculated by further ot; _ 0f ((%3 ZE (%z’)
use of chain rule Ohg Ohg \ 0f2 Oh3 Jf3

s ——

Backward pass

]__Computethe f0=:80+w0'x f2=ﬂ2+w2.h2

derivatives of the loss hy = a[fo] hy = a[fz]

with respect to these

intermediate quantities, fl — 181 + Wy - hl f3 = ,83 + w3 - h3

but in reverse order. hz — a[fl] fi — (yi _ f3)2
o ol; d0fs of

 The remaining o/, = o/, (8h3 8f3)

derivatives also

calculated by further Ol _ Ofz (Ohg 0fs 04;)

use of chain rule Oha (%2 Of2 Ohg Of3
({%7; O0fy Ohs Of3 8&;)
6fl 8f1 8h2 8f2 8}13 (‘9f3

Ohq 3h1 0f1 Ohy Ofy Ohs Of3
8&- 0f1 Ohy Ofs Ohs Of3 a€@'>
ofo Ohy 0f1 Ohg Ofy Ohs Ofs

ol; Ofr ((%2 Of2 Ohs Of3 8&—)

s ——

Backward pass

1. Compute the
derivatives of the loss
with respect to these

intermediate quantities, 0ti _ U fa — 1
but in reverse order. dfs3 (f2 =)
ol; Of3 oL
Ohs Ohs Ofs
o ol; Ohs [Of3 OF;
 The remaining /s = 8fy \ Ohs O

derivatives also

calculated by further

use of chain rule Ohy (‘9h2
ol; O0fy Ohs Of3 8&-)

ol; 0fr (
df1 (9f1 <8h2 O0fy Ohs 0f3

Ohs Ofs 8&)
df2 Ohz df3

ol; Of1 [Ohg Ofz Ohg Of3 OF;
Ohy (9h1 df1 Oha 0f2 Ohs é)f3)

0f1 Ohy Ofy Ohs Of3 OV;
Ohy Of1 Oho Ofa Ohg 8f3>

ol;
dfo

%

= 2(f3 - yz)
0
Backward pass T,
Ohs Ohs Ofs
1. Compute the YD _ Ohs ((‘9]"3 agi)
derivatives of the loss Ofs Of2 \Ohs 0fs
with respect to these ol; Ofy (Ohz 0fs OL;
intermediate quantities, Ohs (‘9h2 (8]"2 Ohs 8f3>
but in reverse order. o O fs Ohs Ofs O
df1 afl <8h2 df2 Ohs 8]‘)3)
ol; Of1 (Oha 0fy Ohs df3 OL;
* The remaining Ohq 8h1 (8]’1 Ohs Ofy Ohs 8f3>
derivatives also o (

O0f1 Oho Ofy Ohs Of3 3&')

calculated by further use ofy Ohy Of1 Ohg Ofy Ohsz Of3

of chain rule

Ohy ofr Ohy 0 f2 Ohg 9fs
00\ _Ofo (80, \ Oh1 (8¢;_Of1 (06, _Oh2 (8¢;_Of2 (8¢;_Ohs (¢, /.
0 fo Oh1 0 f1 Oho 0 f2 Ohs O0fs ?

We extend this to get to the
parameters w’s and B’s

Backward pass

2. Find how the loss fo=FBo+wo-x f2 = B2+ w2 hy
changes as a function of hy = alf,] h; = alf;]
the parameters 3 and o. fi =By + wy-hy fa = B3+ w3 - hs
h, = a[f1] ;= (yi — f3)°
S o op o
&uk N &uk afk

/ How does a small

change in f; change [;?

How does a small

. How does a small
change in ®, change [;?

change in o, change f;?

Backward pass

2. Find how the loss fo=FBo+wo-x f2 = B2+ w2 hy
changes as a function of hy = alf,] h; = alf;]
the parameters 3 and o. fi =By + wy-hy fa =P34+ w3 - hs
h, = a[f1] ;= (yi — f3)°
e o op o
&uk N &uk afk

/

How does a small Ofk _ hy
change in o, change [;? dwg

Already calculated in
part 1.

Backward pass

2. Find how the loss fo =080+ wo-x fo =062+ w3 - hy
changes as a function of h: = a h- = a
the parameters 3 and o. 1 [fO] 3 [fZ]
fi=BF1twi-hy fz=PB3+ w3 h3
h, = alf1] £ = (i — f3)°
e Another application of
the chain rule 8& 6f]€ EML
e Similarly for 3 —
parameters aCUk awk afk

ot i oL,
9B~ O Ol

1

Backward pass

2. Find how the loss f0=:80+w0'x f2=,32+(1)2'h2

changes as a function of hl — a[fo] h3 — a[fz]
the parameters 3 and o.

Gradients

* Backpropagation intuition
* Toy model

* Matrix calculus
* Backpropagation matrix forward pass
* Backpropagation matrix backward pass

Jupyter Notebook Example

7 Backprop with Micrograd lite ptl.ipynb

cO ©) 7_Backprop_with_Micrograd_lite_pt1.ipynb G share £F °
File Edit View Insert Runtime Tools Help Cannotsave changes
= + Code + Text # Copy to Drive NV ng\:: L . ~

. v Gradient Calculations and Backpropagation
X

C ZC Open in Colab

(] A simplified implementation of a PyTorch like backpropagation and automated differentiation algorithm, e.g. autograd, via a computation
graph.

ORVAR N S |

The code is based on Andrej Karpathy's micrograd.

v [1] import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mp
from IPython.display import Image, HTML

%matplotlib inline

v Building the vValue Class

Like the TensorFlow Tensor object, we build a data wrapper as a class called Value and build in on all the functionality we need to
define a Multi-Layer Neural Network (a.k.a. Multi-Layer Perceptron) and train it.

https://github.com/DL4DS/sp2024_notebooks/blob/main/lecture/7_Backprop_with_Micrograd_lite_pt1.ipynb

Gradients

* Backpropagation intuition
* Toy model
 Jupyter notebook example of backprop and autograd

* Backpropagation matrix forward pass
* Backpropagation matrix backward pass

Matrix calculus

Scalar function f|-] of a vector a

- Of -
a1 i;;

q — |92 df | daz
a3 Da | 9f

a4y das

of
_Oag _

The derivative is a vector of shape a

Matrix calculus

Scalar function f|:] of a matrix a

of
OA

i of of]
dai1 daio dai1s
of of of
80,21 80,22 aCLQS
af of f
Oaz1 Oasz2 Oass
of of of
8a41 8&42 6CL43

The derivative is a matrix of shape a

Matrix calculus

Vector function f|-] of a vector a

- _&1_
f f1 e
= || 2= |,
fg _&4_

Vector of scalar
valued functions

of
oa

Columns are each
element function

/|

o1
8@1
ofr
8a2
ofr
8a3
ofr

_8a4

Of2
80,1
9f2
6a2
f2
8a3
Of2
8&4

9137
80,1
9fs
8a2
9fs
6a3
Ofa

Oay _

!
Rows are each

variable element

7

Comparing vector and matrix

Scalar derivatives:

o _

Ohn 8—h3(53 + w3h3) = ws

I3 = B3 + wshs

Comparing vector and matrix

Scalar derivatives:

0 0
J3 = B3 + wshg 8—{2 — 8—h3(53+w3h3) — W3
Matrix derivatives:
of; 0

— ,33 -+ Qghg (9h3 — 8h3 (/33 =+ QBhS) Qg

Comparing vector and matrix

Scalar derivatives:

0fs o,
_ B hs = 1
Matrix derivatives:
Ofs o,

f; = 35 + Qs3hs 0B, 5’—53(63 + Q3h3) =1

Gradients

* Backpropagation intuition
* Toy model
 Jupyter notebook example of backprop and autograd

 Matrix calculus

* Backpropagation matrix backward pass

The forward pass ©

Training
Q) 0 Q0 1 Q 2 Q 3
‘ output, y ﬁ’)
=0 <

A

<7 <7
OO > 8>@
‘A /
Training Hidden Hidden Hidden Output Loss. [
input, x layer, hy layer, ho layer, hg flx, @] ’

1. Write this as a series of

intermediate calculations fo = By + Qox;
h; = al[fy]
f; = /31 + Q1hy
hy, = a|fy]
fy = /82 + Q2ho
h; = a[fs]
f3 = B3 + Qshs

gi — 1[f37 yZ]

Training
h {2 {3 output, y %y)
=80

The forward pass

Training Hidden Hidden Hidden Output Loss.]
input, x layer, h; layer, ho layer, hs flx, @] ’
1. Write this as a series of
intermediate calculations fo = By + Qox;
h; = alf
2. Compute these 1 [O]
intermediate quantities f; =06, + Q1hy
h2 = a[fl]
fo = 3, + Q2h,
h3 = a[fg]
f3 = B85 + Q3hs

C; = 1f3, 3]

Training
4 {2 {3 output, y %y)
=80

The backward pass

Training Hidden Hidden Hidden Output [Z
input, x layer, h; layer, ho layer, hs flx, @] 055,
1. Write this as a series of 0Y;
intermediate calculations fo = By + Qox; Of 3
2. Compute these hy = alfo) 0l; ohs 0f; 0V;
intermediate quantities f1 =06+ Q21hy 3f2 — 8f2 3h3 3f3
h, = alf
3. Take derivatives of ’ = 0l Ohs Ofy ([Ohs 0f; 0/;
out : fo = By + Q2hy —
put with respect to of of, oh of, oh- Of
intermediate quantities h; = a[f2] 1 1 2 2 3 Y13
f3 :IBS + Q3hsg (‘M _ 8h1 8f1 th an 8h3 8f3 (%z
0 = 1[f3, y;] ofy 0fy 0h, 0f; Ohy 0fy Ohs 0fy

Gradients

* Backpropagation intuition

* Toy model

 Jupyter notebook example of backprop and autograd
* Matrix calculus

* Backpropagation matrix forward pass

Training
4 {2 {3 output, y %y)
=80

The backward pass

Training Hidden Hidden Hidden Output [Z
input, x layer, h; layer, ho layer, hs flx, @] 055,
1. Write this as a series of 0Y;
intermediate calculations fo = By + Qox; Of 3
2. Compute these hy = alfo) 0l; ohs 0f3 0¢;
intermediate quantities f1 =06+ Q21hy 3f2 — 8f2 3h3 3f3
h, = alf
3. Take derivatives of ’ = 0l Ohs Ofy ([Ohs 0f; 0/;
out : fo = By + Q2hy —
put with respect to of of, oh of, oh- Of
intermediate quantities h; = a[f2] 1 1 2 2 3 Y13
f3 :IBS + Q3hsg (‘M _ 8h1 8f1 th an 8h3 8f3 (%z
0 = 1[f3, y;] ofy 0fy 0h, 0f; Ohy 0fy Ohs 0fy

Yikes!

* But:

Of;3 0

Q-h Qr
8h3 8h3 (B3 + Q3hg) = Q3

e Quite similar to:

Ofs 0

8h3 — 8h3 (B3 + wshs) = ws

The backward pass

1. Write this as a series of
intermediate calculations

2. Compute these
intermediate quantities

3. Take derivatives of
output with respect to
intermediate quantities

Trainin
3 %, {5 output,gy %y)
O Q\@
=0
Training Hidden Hidden Hidden Output [Z
input, x layer, h; layer, ho layer, hs flx, @] 055,
of 0
0& 5’?3 — 5’T (,33 + Qghg) = Qg
f() — ,80 + Q()XZ' (9f3 3 3
by = alfo d; Ohy| 0fs AL,
=P b Of, Ofy Ohg Of;
he = aly £, [Ohs Of; O
fo = By + Q2hy 0t — oh; Ot (3 3 Z)
hy — alf] of, _ Of; Oh, \ f, Ohs Of;
f3 :53 + Q3hsg (‘M _ 8h1 8f1 th an 8h3 8f3 (%z
0, = 1[fs, yi] of, _ Of, oh; \ Of, Ohy Of, Ohs Ofs

Training
4 {2 {3 output, y %y)
=80

The backward pass

Training Hidden Hidden Hidden Output [Z
input, x layer, h; layer, ho layer, hs flx, @] 055,
1. Write this as a series of 0Y;
intermediate calculations fo = By + Qox; Of 3
2. Compute these hy = alfo) 0l; ohs 0f; 0V;
intermediate quantities f1 =06+ Q21hy 3f2 — 8f2 3h3 3f3
h, = alf
3. Take derivatives of ’ = 0l Ohs Ofy ([Ohs 0f; 0/;
out : fo = By + Q2hy —
put with respect to of of, oh of, oh- Of
intermediate quantities h; = a[f2] 1 1 2 2 3 Y13
f3 :IBS + Q3hsg (‘M _ 8h1 8f1 th an 8h3 8f3 (%z
0 = 1[f3, y;] ofy 0fy 0h, 0f; Ohy 0fy Ohs 0fy

Derivative of RelLU

2.0

Output
o
o

RelU|z]

Derivative of RelLU

2.0

Output
o
o

RelU|z]

Iz > 0]

“Indicator function”

Derivative of RELU

1. Consider: where: aq bl
a= |[az b= |b
a = ReLU|b| x
|43 b3
2. We could equivalently write: 3. Taking the derivative
P i] I [Ja da das | B
a1 ReLU|bq | 9 gbi gbf gbf I[by > 0]
Qo | = ReLLU _bg_ b gzg g%f gii;” — 8 I[[b2 > O]
- - - g ai a as
as ReL.U b3 | 9b; db; 9bs| L

4. We can equivalently pointwise multiply by diagonal

I[b > 0|®

The backward pass

1. Write this as a series of
intermediate calculations

2. Compute these
intermediate quantities

3. Take derivatives of
output with respect to
intermediate quantities

Q4 Q2 23

Training
output, y %y)

> 8>@
o=
Training Hidden Hidden Hidden Output Loss. [
input, x layer, hy layer, ho layer, hg f[X, ¢] ’
o, Ilfy > 0]
fo = By + Qox; Of;
by = alfo) 0; Ohs Of; 0L,
f=p by Of; | Of; Ohy Of
b2 =alf] dhy Of; Of
f2 — ,32 —|— QQhQ 86% — 8h2 an (3 3 : >
h3 — a[fg] afl afl 8112 an 8h3 6f3
f3 :53 + Q3hsg (‘M _ 8h1 8f1 th an 8h3 8f3 (%z
0, = s, y,] of, Of, oh, \ Of, Ohy Of, Ohy Ofs

The backward pass

1. Write this as a series of
intermediate calculations

2. Compute these
intermediate quantities

3. Take derivatives of
output with respect to
intermediate quantities

4. Take derivatives w.r.t.
parameters

— /30 + Qox;
= a[fg]
— ,31 + thl

,82 + QZhQ

= (B3 + Q3h3

= 1[f3, y4]

Training
input, x

O
=

Q5 Q3

Training

output, y %y)

5

Hidden Hidden Hidden
layer, hy layer, ho layer, hg
ol; Ofy 0L
0B, 0By Of;
0
= ——= (B + Qrhy
i
- Ofy

Output
flx, ¢]

Loss, [

The backward pass

1. Write this as a series of
intermediate calculations

2. Compute these
intermediate quantities

3. Take derivatives of
output with respect to
intermediate quantities

4. Take derivatives w.r.t.
parameters

Training Hidden
input, x layer, hy
= By + Qox; 0Y;
— a[fO] 0
= B + Q1hy
= a|fy]
= By + shy
= a|fy]
= B3 + Q3h;
=13,y

O
=

Hidden
layer, ho

Q5 Q3

Hidden
layer, hj

oty 0,

0
~ 0, k
0%
8fk

~ 0Q, Of

(/Bk + Qkhk)

Training

output, y %y)
/8>@

Output
flx, ¢]

%
oty

Loss, [

Gradients

* Backpropagation intuition

* Toy model

 Jupyter notebook example of backprop and autograd
* Matrix calculus

* Backpropagation matrix forward pass

* Backpropagation matrix backward pass

Pros and cons

* Extremely efficient
* Only need matrix multiplication and thresholding for ReLU functions

* Memory hungry — must store all the intermediate quantities

e Sequential
e can process multiple batches in parallel
* but things get harder if the whole model doesn’t fit on one machine.

Feedback?

